If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+79t+5=0
a = 16; b = 79; c = +5;
Δ = b2-4ac
Δ = 792-4·16·5
Δ = 5921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(79)-\sqrt{5921}}{2*16}=\frac{-79-\sqrt{5921}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(79)+\sqrt{5921}}{2*16}=\frac{-79+\sqrt{5921}}{32} $
| 4(2−4y)=8y+36 | | 4x+62=3x-8 | | 3x+25=5x+5 | | 6a^=24 | | z²-4=0 | | x^2=(x+4)(x-2) | | 5(2(x+1)=7x+14 | | 10=8+8b-6b | | 4(9r+6)=32r+2r+8+6 | | -9s+20=-34 | | –40=2y+8y | | 6a+40=a | | x~4.3=6.8 | | 5x-27=2x+51 | | 4(q-65)=44 | | 4y20=100 | | -x+7=(2x+1) | | 0.6y-0.6=0.2-0.9y | | 2+x5=22 | | −1/3=4j−10/3 | | 11z-5=9z7 | | 7(2a-5)=-22 | | -2=10r-9+r | | m−–4=54 | | 6x(4+7)=6x4+6x7 | | 100+-5x=180 | | X+5=2x-75 | | 14=d+) | | 8x-5x=-11+32 | | 60=6(g-74) | | 11×3×x=2×11×3+2×11×x+2×3×x | | 3n+21=16 |